H(t)=-16t^2-85t+3

Simple and best practice solution for H(t)=-16t^2-85t+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2-85t+3 equation:



(H)=-16H^2-85H+3
We move all terms to the left:
(H)-(-16H^2-85H+3)=0
We get rid of parentheses
16H^2+85H+H-3=0
We add all the numbers together, and all the variables
16H^2+86H-3=0
a = 16; b = 86; c = -3;
Δ = b2-4ac
Δ = 862-4·16·(-3)
Δ = 7588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7588}=\sqrt{4*1897}=\sqrt{4}*\sqrt{1897}=2\sqrt{1897}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(86)-2\sqrt{1897}}{2*16}=\frac{-86-2\sqrt{1897}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(86)+2\sqrt{1897}}{2*16}=\frac{-86+2\sqrt{1897}}{32} $

See similar equations:

| c/3+14=10 | | r/4-2=2.01 | | 3x-2(4x-11)-(7x+1)=1 | | -n^2+10n+24=0 | | 48+(3x-15)+90=180 | | (3x+14)+(5x+20)+114=180 | | 2h-11=7 | | 54+(x+19)+90=180 | | (5x-17)+68+49=180 | | 3*x+2.5=4 | | 45+(3x-19)+(3x+4)=180 | | 2(5^x+1)=170 | | 3x+5=2(2x+4 | | b/6+3=9 | | X^4-3x^=4 | | x+4+3x=x | | 5(x+1)=x+1 | | x^2+7x=-109 | | -4(2-3r)+r=-73 | | -69=-3(-4n+4) | | 1+4(5-3m)=69 | | -55=-5(-2x+1) | | -5(-5k+2)=-60 | | 4(5+4r)-5=95 | | 4x+3(4x-5)=65 | | 238=u+907 | | 30/100=n | | y=360(0.72)^21 | | 10.1=p+7.2 | | y=360(0.72)^3 | | p/19=8 | | -t+2=t |

Equations solver categories